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We investigate a stochastic model of infection dynamics based on the Susceptible-Infective-Recovered �SIR�
model, where the distribution of the recovery times can be tuned, interpolating between exponentially distrib-
uted recovery times, as in the standard SIR model, and recovery after a fixed infectious period. This is achieved
by introducing L infective classes, as compared to 1 in the standard model. For large populations, the spectrum
of fluctuations around the deterministic limit of the model can be computed analytically. The demographic
stochasticity has the effect of transforming the decaying oscillations of the deterministic model into sustained
oscillations in the stochastic formulation. We find that the amplification of these stochastic oscillations in-
creases with L, as well as their coherence in frequency. For large values of L �of the order of 10 and greater�,
the height and position of the peak of the power spectra changes little and is described well by the model with
fixed recovery period �L→��. In this limit we give a closed-form expression for the power spectrum of
fluctuations of infective individuals.
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I. INTRODUCTION

There are ongoing debates in the field of population dy-
namics regarding the driving mechanisms of the noisy oscil-
lations found in ecological and epidemiological data �1� and
the different approaches to modeling them �2�. This mainly
centers around the relative importance of deterministic ver-
sus stochastic forces on the dynamics of the system. In epi-
demiology, where detailed data is more abundant, demo-
graphic stochasticity has been shown to give rise to recurrent
epidemic outbreaks, which cannot be related to external
forcing �3,4�.

A stochastic theory developed for a predator-prey model
�5� and then applied to a Susceptible-Infective-Recovered
�SIR� model with births and immigration �6� helped eluci-
date the mechanism behind this phenomenon. The power
spectrum of the infective time series was derived and shown
to be determined, both in the presence and in the absence of
external forcing, by the resonance of internal noise with a
frequency which could be calculated from the model. For the
parameter values that correspond to endemic diseases �e.g.,
measles, rubella, and whooping cough�, the amplitude of the
resonant fluctuations are comparable, even in large systems,
to the oscillations induced by seasonal forcing.

Within a deterministic framework, several modifications
of the basic SIR dynamics have been explored with a view to
obtaining robust unforced oscillations as well as more bio-
logically realistic models. Some examples that can be found
in the mathematical epidemiology literature are higher-order
nonlinearities in the infection term �7,8�, age-structured
populations �9�, delays �10�, and coupling with pathogen
evolution �11�. More recently, it has been shown that if the
network of contacts in the population is taken to evolve as a
consequence of disease awareness, the deterministic descrip-

tion of Susceptible-Infected-Susceptible �SIS�, SIR and
Susceptible-Infected-Recovered-Susceptible �SIRS� dynam-
ics in the uncorrelated pair approximation has an oscillatory
phase in a small region of parameter space �12–14�.

The coloring of the basic model with a virtually endless
palette of additional complexities does of course produce
sustained oscillations, and more complex behavior. However,
none of these modifications predicts the regular patterns of
recurrent epidemics found in many data sets for a significant
range of realistic parameter values �15�.

Discrete SIR type models inspired by the dynamics of
excitable media have been much more successful in produc-
ing robust unforced oscillations, provided that there is
enough mixing in the interactions �16–21�. In contrast with
the continuous models in mathematical epidemiology, which
assume constant rates of recovery and immunity waning,
these discrete models assume that both recovery and immu-
nity loss occur at a fixed number of time steps after infection.
In the context of loss of immunity, this is a very unrealistic
assumption, and the oscillatory behavior found in this ap-
proach must be taken as an artifact of the model.

For many diseases the infectious period is well defined
and the standard assumption of a constant recovery rate, and
thus exponentially distributed recovery times, is epidemio-
logically unrealistic �22–24�. The change to more realistic
recovery profiles has been shown to have limited conse-
quences for the deterministic system �25–27�, but for the
stochastic version of the model, less dispersed infectious pe-
riods destabilize it, leading to larger stochastic fluctuations
around the endemic equilibrium �28�.

In �29� the power spectrum of a stochastic SIR model
with a fixed infectious period was numerically computed.
For a large parameter range, the amplitude and coherence
�power centered about the peak of the spectrum� of the fluc-
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tuations were found to be enhanced with respect to the stan-
dard SIR model �6�. In this paper, we establish these results
analytically and show that the amplification of demographic
stochasticity is large enough for the behavior of moderately
sized systems to be akin to the self-sustained oscillations
typical of the discrete versions of the model.

II. MODEL AND ANALYSIS

In order to obtain infectious period distributions that in-
terpolate between exponentially distributed and constant in-
fectious periods, we follow Lloyd �27� and split up the re-
covery process into a number of stages in which the time
spent in each class is exponentially distributed �30�. When
susceptible individuals are infected they enter the first infec-
tive class, from which they move with a constant rate to the
next class, and so forth until recovery. If L is the total num-
ber of infective classes, by fixing the transition rate from
class Ij to class Ij+1 equal to 1 /L�, the total average recovery
period is fixed to 1 /�. This produces gamma-distributed re-
covery profiles, with the constant recovery profile obtained
in the limit of large number of infectious classes L �see Fig.
1�. The parameter L can effectively be fixed in the model by
fitting the infectious period distribution to data �22,24�. Pre-
vious authors have tended to use smaller values �less than
20� to achieve good fits to data �31–33�.

The model has equal birth and death rates � so that the
total population size N is kept constant. The processes
through which the system evolves are thus

Infection S + Ij→
�

Ij + I1 j = 1, . . . ,L ,

Birth/death �Ij,R�→
�

S j = 1, . . . ,L ,

Recovery Ij→
L�

Ij+1 j = 1, . . . ,L − 1,

IL→
L�

R , �1�

where S is the total number of susceptibles, I=� j=1
L Ij is the

total number of infectives, Ij are the infectives in class j, and
� is the contact rate among individuals. Since N=S+ I+R is
constant, we eliminate the number of recovered from our
equations by using R=N−S− I.

There are two ways in which the model may be investi-
gated: For finite L it can be simulated with Gillespie’s algo-
rithm �34� �or one of the more efficient methods based on it
�35��, and it can be analyzed analytically by constructing a
master equation corresponding to processes �1� and perform-
ing van Kampen’s system-size expansion �5,6,36� on this
equation. There are L+1 independent variables which de-
scribe the state of the system, but as our interest is on the
total number of infectives, the variables we use to describe
the system are ���S , I , I2 , . . . , IL�, where I1 is given in terms
of the other variables, I1= I−� j=2

L Ij. The master equation then
takes the form

dP��;t�
dt

= �
����

T��	���P���;t� − �
����

T���	��P��;t� ,

�2�

where T�� 	��� is the transition rate from the state �� to the
state �.

From the definition of the model in Eq. �1� we can read
off the transitions rates; they are generalizations of those
found in �6�. Listed together with the reaction they represent,
they are

�1� S+ I→
�

I+ I1

T�S − 1,I + 1,I2, . . . 	S,I� = �SI
N ,

�2� I1→
�

S

T�S + 1,I − 1,I2, . . . 	S,I� = ��I − � j=2

L
Ij� ,

�3� Ij→
�

S

T�S + 1,I − 1, . . . ,Ij − 1 . . . 	S,I� = �Ij ,

�4� R→
�

S

T�S + 1,I, . . . 	S,I� = ��N − S − I� ,

�5� I1→
L�

I2

T�S,I,I2 + 1 . . . 	S,I� = L��I − � j
Ij� ,

�6� Ij→
L�

Ij+1

T�S,I, . . . ,Ij − 1,Ij+1 + 1, . . . 	S,I� = L�Ij ,

�7� IL→
L�

R
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FIG. 1. �Color online� �Main� The distribution of infectious pe-
riods, f I�t�, for L=1,2 ,5, and 50 �solid, dotted, dot-dashed, and
dashed lines, respectively�. The case L=1 corresponds to the expo-
nential distribution of the standard SIR model. The inset shows the
probability that an individual is still infectious at time t: for large L
it approaches a step function, where all individuals remain infec-
tious for a constant period of time. The average infectious period,
1 /�, is 13 days.
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T�S,I − 1,I2, . . . ,IL − 1	S,I� = L�IL,

where I= �I , I2 , . . . , IL�.
We may now apply the system-size expansion. At leading

order in the system size N, this expansion gives the mean-
field model, while higher-order terms describe the stochastic
fluctuations. One starts by introducing the new variables: S
=�N+x0


N, I=�N+x1

N, and Ij =� jN+xj


N with j	2,
where � is the fraction of susceptibles, � is the fraction of
total infectives, and � j is the fraction of infectives in class j,
with x0 , . . . ,xL describing the stochastic corrections. The full
details involved in carrying out the expansion are given in
Appendix A. To leading order, we find the mean-field �deter-
ministic� equations for the fractions, which, introducing the

new parameters �̂=� /� and �̂=� /�, and moving to a scaled
time 
=�t, have the form

�̇ = − �̂�� + �̂�1 − �� ,

�̇ = �̂�� − �̂� − L�L,

�̇2 = − �L + �̂��2 + L�� − � j=2

L
� j� ,

�̇ j = − �L + �̂�� j + L� j−1, j = 3, . . . ,L . �3�

Apart from a trivial solution ���=0; � j
�=0, j

=2, . . . ,L�, there is a unique fixed point for Eqs. �3�. The full
form is given in Appendix A, but keeping only terms of

order �̂, it is ��= �1+ �1+1 /L��̂ /2� / �̂, ��= �1−1 / �̂��̂, and

� j
�= �1−1 / �̂��̂ /L.

The variables x0 , . . . ,xL describe the fluctuations around a
trajectory of the mean-field system. We will be especially
interested in the fluctuations when the transients of the de-
terministic equations have died out and the system is in equi-
librium, fluctuating about the fixed point. The fluctuations
obey a linear Fokker-Planck equation, which is equivalent to
a set of Langevin equations of the form �5,6,36�

dxi

d

= �

j=0

L

Aijxj + �i�
� , �4�

where �i�
� are Gaussian noise terms with zero mean and
satisfying ��i�
�� j�
���=Bij��
−
��. Therefore the Gaussian
stochastic process describing the fluctuations is completely
characterized by two L+1 dimensional matrices, Aij and Bij.
These are the final result of carrying out the expansion and
depend on the time 
 through the solutions of the mean-field
equations �, �, and � j. As mentioned above we will be in-
terested in evaluating these at the fixed point, and as a con-
sequence the matrices A and B cease to be time dependent.
Explicit expressions for these two matrices are given in
Appendix A.

To search for sustained oscillations we need to find the
power spectrum for the total number of infectives, PL��
= �	x̃1	2�, where x̃1 is the Fourier transform of x1�
�, the sub-
script L denotes that the whole procedure depends on the
number of infective classes. By taking the Fourier transform
of Eq. �4� we obtain

�
j=0

L

Sijx̃j + �̃i = 0, �5�

where Sij =Aij − i�ij. The power spectrum is then obtained
as

PL�� =
�ijBijCi��Cj

���
D��D���

, �6�

where Ci�� is the co-factor of the matrix S in row i and
column j=1, and D�� is the determinant of the full S ma-
trix. In practice the matrices are computed numerically, and
PL�� is computed from these using a symbolic package
such as MATHEMATICA �37�.

In general Aij will have L+1 eigenvalues. Since Sij =Aij
− i�ij, the zeros of the determinant of S in  space will be at
positions which are −i multiplied by the eigenvalues. At
these values, the power spectrum will have a pole in the
complex  plane. Therefore if there are � complex eigenval-
ues of A, we would expect to find � peaks in the spectrum at
frequencies which are approximately equal to the imaginary
parts of the eigenvalues. In numerical simulations we only
ever see one peak �see Fig. 4�, so the question arises: is there
only ever one set of complex eigenvalues? Numerical deter-
mination of the eigenvalues of A for small L shows that there
are typically more than one pair of complex eigenvalues, but
that there is always one dominant pair, with a real part sev-
eral orders of magnitude smaller than the others. This implies
that this dominant eigenvalue is very close to the real  axis
and so will give a large peak and therefore large amplitude
fluctuations. The imaginary part of the dominant eigenvalue
is also orders of magnitude smaller than those of the others,
and therefore the tiny peaks resulting from these other com-
plex eigenvalues will be at much larger frequencies.

The theoretical power spectra resulting from the infec-
tious period distributions in Fig. 1 are presented in Fig. 2.
The case previously considered �6� corresponds to L=1, and
it is clear that both the enhancement of the amplitude and the
coherence of the power spectrum increases as L increases.
The change is more pronounced for low values of L follow-
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FIG. 2. �Color online� Theoretical power spectra for the fluctua-
tions of the total number of infectives when L=1,2 ,5, and 50. The
case L=1 corresponds to exponential recovery. For increasing L,
there is a shift of the resonant frequency and an increase in the
amplitude of fluctuations. Other parameters are �=1.3, 1 /�=13,
and �=5.5�10−5.
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ing the large changes in the recovery profile at those low
values. Therefore for the values of L which are usually
thought to be applicable �L of the order of 10 or 20 �31,32��,
an enhancement of three or four times that found with expo-
nential recovery �L=1� can be seen. The position of the peak
�given by the fixed points of the mean-field equations� also
shifts with L. Figure 3 is a plot of the amplification �which is
proportional to the amplitude �6�� and position of the peak
�endogenous frequency� of the power spectrum as a function
of L. The change in these quantities with L is smooth and
appears to approach a fixed limit for large L. They are well
fitted by an expression of the form a−b / �c+L�, where a ,b,
and c are constants, reinforcing the notion that they have a
finite limit as L→�.

Since the position and peak of the power spectrum change
little for values of L of the order of 10 or above, it is grati-
fying to find that the power spectrum for L→� can be ob-
tained in closed form, at least for small �̂. The details of the
calculation are given in Appendix B, but we will give the

final result here. We first define Cj��= �−1�L−1LLĈj�� and

D��= �−1�L−1LLD̂��, so that power spectrum �6� becomes

PL�� =

�
i=0

L

�
j=0

L

Ĉi��BijĈj
���

D̂��D̂���
. �7�

Now it turns out that Ĉj�� and D̂�� have a finite limit as
L→�. Specifically, as shown in Appendix B the numerator
of Eq. �7� is

�
i=0

L

�
j=0

L

Ĉi��BijĈj
��� = �̂1 −

1

�̂
���̂2 + 2�−1

� ��̂2��̂2 − 2�̂ + 2� + 2�

��e2�̂ − 2e�̂ cos  + 1� , �8�

and the denominator is

D̂��D̂��� = e2�̂��̂�̂ − 1 −
�̂

2
�2

+ 2� + e�̂�2 + �̂�

��cos �̂�̂ − 1 −
�̂

2
� −  sin �

+ 1 +
�̂

2
�2

. �9�

A numerical determination of the zeros of function �9� shows
that there is a single pair of complex roots with small real
and imaginary parts, which give the dominant peak in the
spectrum. The analytically derived spectra are compared to
those obtained numerically in Fig. 4. The limit L→� corre-
sponds to the case where recovery occurs at a fixed period of
time after infection. The power spectrum for this case was
obtained by simulating a standard SIR model �with a single
infective class� using a fixed time step. The stochastic infec-
tion and birth/death processes are implemented as usual, but
with recovery occurring at a constant number of time steps
after infection �38�. The numerical spectra have intentionally
been left relatively noisy to help distinguish them from the
analytic results, otherwise the agreement is excellent.

III. DISCUSSION AND CONCLUSION

There are a wide range of models of infection dynamics,
from the very simple deterministic SIR model right through
to agent-based models which incorporate details of the indi-
viduals in the community under investigation. Simple deter-
ministic models have the advantage of being able to be un-
derstood analytically, but the greater the degree of realism
the more difficult this becomes. In the past the introduction
of stochasticity has been an example of this: while stochastic
effects are undoubtedly important in many situations, their
inclusion meant a resort to numerical methods rather than
analysis. However recently, by using techniques originally
developed in nonequilibrium statistical physics �5,6,36�, the
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FIG. 3. �Color online� �Main� Increase in amplification of PL��
with increasing L, where amplification is defined as the area under
the power spectrum, which is equal to the mean squared variance of
the time series x1. �Inset� Drift of the peak position of PL�� for
increasing L. In both cases �=1.3, 1 /�=13, and �=5.5�10−5.
Both curves are perfectly fitted by an expression of the kind: a
−b / �c+L� �continuous line�, which shows that the underlying de-
pendence on L is simple and that the power spectrum converges to
a definite shape as L→�.
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FIG. 4. �Color online� Comparison between the analytic power
spectra �solid blue lines� given by Eq. �6� and numerical simula-
tions of the SIR model �noisy red lines� for L=1,4, and �, for
which there is perfect agreement. Other parameter values are �
=1.32, 1 /�=8, �=6�10−4, and a population size of N=106 indi-
viduals. The numerical curves were obtained by averaging the
power spectra of 200 realizations for each of the three cases
considered.
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stochastic SIR model has been opened up to analytic inves-
tigation.

In this paper we have moved one step further and shown
that the SIR model with L infectious stages, which has a
much more realistic recovery profile, can be analyzed almost
as simply as the standard SIR model �which has L=1�. The
sustained and amplified oscillations found in the standard
SIR model �6� are even more evident for L�1, with the
frequency of the oscillations and their amplitude increasing
with L. Typical values of L estimated from data lie between
10 and 20 �31,32�, and for these values the frequency and
amplitude of the oscillations are already near to the
asymptotic limit L→�. In this limit the power spectrum may
be obtained in closed form, verifying the small changes that
occur in the nature of the spectrum for large L.

Some aspects of this staged SIR model have been inves-
tigated previously. Grossman �26� studied the deterministic
SIR model incorporating a fixed infectious period. Later this
work was elaborated by Lloyd �27,28� who expanded the
results to include gamma-distributed infectious periods, as
utilized in this paper, and studied the stochastic version of
the model numerically. He found that the fixed points be-
came less stable with increasing L, which he interpreted as a
“destablilization” of the SIR model. Our result that the total
amplification �which is proportional to the mean variance of
the time series� increases with L is consistent with Lloyd’s
earlier result that the damping time of the deterministic sys-
tem increased with L. However we should stress that the
frequency of the damped oscillations of the deterministic
system is only approximately the same as the frequency of
the sustained oscillations, due to the additional frequency
dependence in the numerator of power spectrum �6�.

While destabilization has been discussed previously, the
increase in the endogenous frequency of the system with
increasing L has received comparatively little attention. For
example, the exponentially distributed model, parametrized
for measles, predicts a natural period of oscillation of 2
years, whereas the fixed infectious period version �L→��
predicts 1.5 years. We have not included seasonal forcing in
our analysis, but we would expect that a system with a
higher endogenous frequency would be more unstable to sea-
sonal forcing. This would be in line with the findings of
previous authors �28,31�, in the context of deterministic SIR
models.

There are several other extensions of the work carried out
in this paper which we believe would be interesting and
fruitful. External immigration has not been included in the
present study. Since immigration has been shown to have a
stabilizing effect on oscillations in the standard SIR model
�39�, it would be of interest to fully quantify this in a staged
SIR model. Additionally, in order to compare our results ef-
fectively with data, we need to analyze the SEIR version of
model, so as to capture the most realistic recovery profile.
We believe that many of the studies can be carried out using
similar techniques to those utilized in this paper, and so still
further extend the range of models of infectious diseases
which can be studied analytically.
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APPENDIX A: APPLYING THE SYSTEM-SIZE
EXPANSION

In this appendix we give details of the application of the
van Kampen system-size expansion, and also give some of
the results �such as the form of the matrices A and B� that are
too unwieldy to include in the main text.

The master equation for the time evolution of the prob-
ability distribution function is given in Eq. �2�. To write it
out explicitly, as we need to in order to apply the system-size
expansion, we introduce the step operators �5,6,36�

�s
�1f�S,I,I2, . . . ,IL� = f�S � 1,I,I2, . . . ,IL� ,

�1
�1f�S,I,I2, . . . ,IL� = f�S,I � 1,I2, . . . ,IL� ,

� j
�1f�S,I,I2, . . . ,IL� = f�S,I,I2, . . . ,Ij � 1, . . . ,IL� .

Then Eq. �2� with transition rates �1� becomes

dP��;t�
dt

= ���s
+1�1

−1 − 1�
�SI

N
+ ��s

−1�1
+1 − 1��I − �

j=2

L

Ij�
+ �

j=2

L

��s
−1�1

+1� j
+1 − 1��Ij + ��s

−1 − 1���N − S − I�

+ ��2
−1 − 1��I − �

j=2

L

Ij� + �
j=2

L−1

�� j
+1� j+1

−1 − 1��Ij

+ ��1
+1�L

+1 − 1��IL�P��;t� . �A1�

Making the change of variables

S = N� + 
Nx0,

I = N� + 
Nx1,

Ij = N� j + 
Nxj ,

mentioned in the main text, the step operators may be ex-
panded in a power series in N−1/2,

�s
�1 = 1 �

1

N

�

�x0
+

1

2N

�2

�x0
2 ,

�1
�1 = 1 �

1

N

�

�x1
+

1

2N

�2

�x1
2 ,

� j
�1 = 1 �

1

N

�

�xj
+

1

2N

�2

�xj
2 .

Substituting these into the master Eq. �A1� we may identify a
hierarchy of equations multiplied by different powers of
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N−1/2. At leading order we obtain Eqs. �3�. The unique non-
trivial fixed point of these equations is given by

�� =
�̂/�̂

1 − �1 + �̂
L �−L ,

�� = 1 −
�̂

�̂
� − 1 +

�̂

L�−L

,

� j
� =

�̂
L �1 + �̂

L �−j

�1 + �̂
L �L − 1�1 −

�̂

�̂
�1 +

�̂

L�L

− 1� ,

j = 2, . . . ,L . �A2�

The form of these solutions keeping only terms of order �̂ is

�� =
1

�̂
�1 +

�̂

2
1 +

1

L
�� =

1

�̂
�1 + �̂X�L�� ,

�� = �̂1 −
1

�̂
� ,

� j
� =

�̂

L1 −
1

�̂
�, j = 2, . . . ,L , �A3�

as given in the main text.
At next-to-leading order in the expansion of the master

equation, one finds a linear Fokker-Planck equation for the
fluctuation variables x0 , . . . ,xL of the following type:

��

�

= − �

i=0

L

�
j=0

L

Aij
��xj��

�xi
+

1

2�
i=0

L

�
j=0

L

Bij
�2�

�xi � xj
, �A4�

where the two matrices Aij and Bij which come out of the
expansion depend on the time 
 through �, �0, and � j. Since
we are interested in fluctuations about the equilibrium state,
both matrices are evaluated at the fixed point �Eq. �A3��. The
Fokker-Planck Eq. �A4� is equivalent to the Langevin Eq. �4�
�40,41�, and so a complete description of the fluctuations is
given by the matrices A and B. The explicit forms of Aij and
Bij evaluated at the fixed point are found to be

Aij = �
− �̂� − �̂ − �̂� 0 0 0 . . . 0

�̂� �̂� − �̂ 0 0 0 . . . − L

0 L − �2L + �̂� − L − L . . . − L

0 0 L − �L + �̂� 0 . . . 0

0 0 0 L − �L + �̂� . . . 0

] �

�
�=��,�j=�j

�

,

Bij = �
2�̂�1 − �� �̂�� − �0 − 1� − �̂�2 − �̂�3 . . . − �̂�L

�̂�� − �0 − 1� 2�̂�1 − �� �̂�2 �̂�3 . . . �L + �̂��L

− �̂�2 �̂�2 2�L + �̂��2 − L�2 . . . 0

− �̂�3 �̂�3 − L�2 2�L + �̂��3 . . . 0

] �

�
�=��,�j=�j

�

.

APPENDIX B: THE LARGE L limit

We are able to obtain an analytic form for the power spectrum in the limit L→�, provided we work to linear order in �̂.
In this case the fixed points take the form of Eq. �A3�. In this small �̂ approximation the matrices A and B are

Aij � �
− �̂�̂ − 1 − �̂X�L� 0 0 0 . . . 0

�̂��̂ − 1� 1 + �̂X�L� − �̂ 0 0 0 . . . − L

0 L − 2L − �̂ − L − L . . . − L

0 0 L − L − �̂ 0 . . . 0

0 0 0 L − L − �̂ . . . 0

] �

� , �B1�
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Bij � �
2� − � 0 0 0 . . . 0

− � 2� 0 0 0 . . . �

0 0 2� − � 0 . . . 0

0 0 − � 2� − � . . . 0

0 0 0 − � 2� . . . 0

] �

� , �B2�

where in Bij we have defined �= �̂�1− 1

�̂
�.

To carry out the L→� limit, we introduce a sequence of
matrices. The matrix Sij =Aij − i�ij is defined in the main
text, together with its determinant D��. It has L+1 rows and
L+1 columns which we label 0 ,1 , . . . ,L. The determinant of
the �L−1�� �L−1� matrix obtained by omitting the first two
rows and first two columns of S, using approximation �B1�
for A, will be denoted by RL−1. By expanding the determinant
D�� about the first two columns one finds that

D�� = �̂��̂ − 1��1 + �̂X�L��RL−1�� − ��̂�̂ + i�

� ��1 + �̂X�L� − ��̂ + i��RL−1�� + �− L�L� .

�B3�

It can be seen from Eq. �B1� that the matrix obtained from
deleting the first two rows and columns can be defined for an
arbitrary value of L, since the entries for the jth rows and
columns for j�2 are simply repeated. Therefore we can de-
fine Rn�� for any n. Expanding the determinant Rn�� about
the first column we find that

Rn�� = − �2L + �̂ + i��− 1�n−1�L + �̂ + i�n−1 − LQn−1�� ,

�B4�

with

Qn��� = det�
− L − L − L . . .

L − L − �̂ − i� 0 . . .

0 L − L − �̂ − i� . . .

] �
n

� .

By expanding along the first column we have

Qn�� = − L�− L − �̂ − i�n−1 − LQn−1�� . �B5�

For small values of n Qn�� can be calculated explicitly. For
instance, when n=3 this polynomial is found to be

Q3�� = − L��L + �̂ + i�2 + L�L + �̂ + i� + L2� .

These small-n forms suggest the general result

Qn�� = �− 1�nL�
j=0

n−1

Lj�L + �̂ + i�n−1−j , �B6�

which may be proved from Eq. �B5� by induction. This in
turn allows us to use Eq. �B4� to find the general expression
for Rn��,

Rn�� = �− 1�n�
j=0

n

Lj�L + �̂ + i�n−j . �B7�

We wish to isolate the L dependence in Rn��, so that even-
tually we may take the L→� limit. We do this by writing
Rn�� in a different form as follows:

Rn�� = �− 1�n�
j=0

n

Lj��
k=0

n−j
�n − j� ! Ln−j−k

k ! �n − j − k�!
��̂ + i�k�

= �− 1�nLn�
m=0

n

�
k=0

m
m!

k ! �m − k�!
 �̂ + i

L
�k

= �− 1�nLn�
k=0

n

�
m=k

n
m!

k ! �m − k�!
 �̂ + i

L
�k

= �− 1�nLn�
k=0

n
�n + 1�!

�k + 1� ! �n − k�!
 �̂ + i

L
�k

= �− 1�nLn+1�
k=0

n

�n+1�k���̂ + i�k,

where we used m=n− j, and defined

�n+1�k� =
1

Lk+1

�n + 1�!
�k + 1� ! �n − k�!

. �B8�

It is useful to introduce R̂n�� through Rn��
= �−1�nLn+1R̂n��, so that

R̂n�� = �
k=0

n

�n+1�k���̂ + i�k, �B9�

which results in all the dependence on L being left in the
coefficients �n+1�k�.

To calculate the factor in the numerator of the power
spectrum we need to determine the function Ci��, which is
the co-factor of the matrix S in row i and column 1 �note that
this is the �i+1�th row and the second column, since the
labeling of rows and columns begins with 0�. Using similar
methods to those above one finds that

C0�� = − �̂��̂ − 1�RL−1�� ,

C1�� = − ��̂�̂ + i�RL−1�� ,

Cj�� = �− 1�L+j−1LL+1−j��̂�̂ + i�Rj−2�� ,

where in the last line j	2 and R0���1. Defining Cj��
= �−1�L−1LLĈj�� and D��= �−1�L−1LLD̂��, power spec-
trum �6� becomes Eq. �7�.

Now we can begin to calculate the various factors in Eq.

�7�, beginning with the denominator. In terms of D̂�� and

R̂��, Eq. �B3� reads
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D̂�� = ���̂�̂ − �̂X�L� − 1� + i���̂ + i�R̂L−1��

− ��̂�̂ + i� , �B10�

but we can find R̂n�� from Eq. �B9�,

R̂n�� = �
k=0

n

�n+1�k���̂ + i�k

= �
m=1

n+1
�n + 1�!

Lmm ! �n + 1 − m�!
��̂ + i�m

�̂ + i

=
1

�̂ + i
�1 +

�̂ + i

L
�n+1

− 1� , �B11�

which has a finite limit for n=L−1 and large L,

lim
L→�

R̂L−1�� =
e�̂+i − 1

�̂ + i
. �B12�

From Eqs. �B10� and �B12� one obtains

D̂�� = e�̂+i��̂�̂ −
�̂

2
− 1� + i� + 1 +

�̂

2
� ,

�B13�

and from this Eq. �9� can be obtained.
The numerator can be written as the sum of the following

different contributions:

�
i=0

1

�
j=0

1

Bi,jĈi��Ĉj�� , �B14�

B1,LĈ1��ĈL
��� + BL,1ĈL��Ĉ1

��� , �B15�

�
j=2

L

Bj,jĈj��Ĉj
��� , �B16�

�
j=2

L−1

�Bj,j+1Ĉj��Ĉj+1
� �� + Bj+1,jĈj+1��Ĉj

���� . �B17�

The first two contributions, Eqs. �B14� and �B15�, are
straightforward to evaluate and lead to the following result in
the limit L→�:

lim
L→�

�
i=0

1

�
j=0

1

Bi,jĈi��Ĉj�� = 2�
�̂2��̂2 − �̂ + 1� + 2

�̂2 + 2

��e2�̂ − 2e�̂ cos  + 1�

and

lim
L→�

�B1,LĈ1��ĈL
��� + BL,1ĈL��Ĉ1

����

= − 2�
�̂2�̂2 + 2

�̂2 + 2 �e2�̂ − 2e�̂ cos  + 1� .

The third and fourth contributions, Eqs. �B16� and �B17�,
when taken together equal

���̂2�̂2 + 2���
n=1

L−2

�R̂n − R̂n−1��R̂n
� − R̂n−1

� �

+ �	R̂0	2 + 	R̂L−2	2�� . �B18�

Using Eq. �B11� it is found that the sum vanishes for large L,
as does 	R̂0	2, with only 	R̂L−2	2 giving a nonzero contribution.
Therefore the sum of contributions �B16� and �B17� as L
→� are given by

lim
L→�
��

j=2

L−1

�Bj,j+1Ĉj��Ĉj+1
� �� + Bj+1,jĈj+1��Ĉj

����

+ �
j=2

L

Bj,jĈj��Ĉj
����

= �
�̂2�̂2 + 2

�̂2 + 2 �e2�̂ − 2e�̂ cos  + 1� .

Adding together Eqs. �B14�–�B17� we find Eq. �8�.
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